Exploiting Oxytricha trifallax nanochromosomes to screen for non-coding RNA genes
نویسندگان
چکیده
We took advantage of the unusual genomic organization of the ciliate Oxytricha trifallax to screen for eukaryotic non-coding RNA (ncRNA) genes. Ciliates have two types of nuclei: a germ line micronucleus that is usually transcriptionally inactive, and a somatic macronucleus that contains a reduced, fragmented and rearranged genome that expresses all genes required for growth and asexual reproduction. In some ciliates including Oxytricha, the macronuclear genome is particularly extreme, consisting of thousands of tiny 'nanochromosomes', each of which usually contains only a single gene. Because the organism itself identifies and isolates most of its genes on single-gene nanochromosomes, nanochromosome structure could facilitate the discovery of unusual genes or gene classes, such as ncRNA genes. Using a draft Oxytricha genome assembly and a custom-written protein-coding genefinding program, we identified a subset of nanochromosomes that lack any detectable protein-coding gene, thereby strongly enriching for nanochromosomes that carry ncRNA genes. We found only a small proportion of non-coding nanochromosomes, suggesting that Oxytricha has few independent ncRNA genes besides homologs of already known RNAs. Other than new members of known ncRNA classes including C/D and H/ACA snoRNAs, our screen identified one new family of small RNA genes, named the Arisong RNAs, which share some of the features of small nuclear RNAs.
منابع مشابه
The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentati...
متن کاملMating of the Stichotrichous Ciliate Oxytricha trifallax Induces Production of a Class of 27 nt Small RNAs Derived from the Parental Macronucleus
Ciliated protozoans possess two types of nuclei; a transcriptionally silent micronucleus, which serves as the germ line nucleus, and a transcriptionally active macronucleus, which serves as the somatic nucleus. The macronucleus is derived from a new diploid micronucleus after mating, with epigenetic information contributed by the parental macronucleus serving to guide the formation of the new m...
متن کاملGenome Biology: The Sleek and Oh-So Chic Oxytricha Nanochromosomes
The somatic nucleus of Oxytricha trifallax contains over 15,000 different chromosomes, most containing a single gene. Analysis of this 50 Mb genome uncovers novel regulatory strategies and adaptive potential when gene copy number and allelic frequency are no longer constrained by genetic linkage.
متن کاملTantalizing Glimpses into a Fragmented Genome
Oxytricha trifallax is an unusual enough organism on the outside. Neither plant nor animal, covered with tiny hair-like protuberances, this one-celled protozoan cruises ponds and puddles in search of microbial meals. But even more unusual is what’s inside. Like other ciliates, O. trifallax has two nuclei: a micronucleus, which contains its entire genome, and a macronucleus, which houses an edit...
متن کاملThe Draft Assembly of the Radically Organized Stylonychia lemnae Macronuclear Genome
Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: A small, germline micronucleus and a massive, vegetative macronucleus. The genome within Stylonychia's macronucleus has a very unusual architecture, comprised variably and highly amplified "nanochromosomes," each usually encoding a single gene with a minimal amount of surr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2011